The Behaviour of nasal glottal fricative and nasal glottal stop segments in Jakarta Indonesian: an OT analysis

In this paper, I analyse alternations that occur when a nasal prefix is added in Jakarta Indonesian (henceforth: JI), a variety of Indonesian with strong connection to Betawi Malay, forming a continuum. In particular, when the prefix is added to words that begin with [?] and [h], we find an intriguing pattern of epenthesis and deletion as shown in

(1) /N+hukum/ ηəhukum 'to punish'(2) /N+ʔambil/ ηambil 'to take'

In analysing nasal substitutions, Pater (1996) proposed *NÇ (nasal voiceless constraints) as the markedness constraints and the other faithfulness constraints must dominate an anti-metathesis constraint LINEARITY in Austronesian languages. I extend Pater's proposal to analyse JI in this paper. However, instead of using *NÇ (nasal voiceless constraints), I propose new constraints *N-GL/STOP (nasal-glottal/stop) and *N-GL/FRIC (nasal-glottal/fricative)¹. The study found that markedness constraints *N-GL/STOP and *N-GL/FRIC respectively dominates DEP, MAX and LINEARITY.

Nasalization misses target glottal in the feature geometrical framework proposed by Cohn (1993). Based on Cohn's hypothesis, this paper suggests that when root-initial glottal stop and glottal fricative occur with the nasal prefix, the glottals do not undergo nasalization. Neither the homorganic nasal nor a homorganic clusters occurs with root-initial glottal fricative [h] preceded by a nasal in JI. Instead, epenthesis mediates the sequence [ŋh] as shown in (1) above. I propose *N-GL/FRIC over LINEARTY, DEP and MAX to analyse the root-initial glottal fricative [h] as illustrated in (3). However, unlike the [h], the glottal stop behaves like any other obstruent in JI. It favors deletion rather than epenthesis. The ranking argument in (4) indicates that [?] undergoes deletion rather than fusion in the optimal output in (4a). Epenthesis is disfavored as it appears as a losing candidate in (4b).

However, the [η h] and [η ?] sequences possibly occur simultaneously in the output between words. This occurs when [η h] and [η ?] are preceded by at least a core syllable (CV) and the nasal itself is included as the final consonant in the maximum syllable CVC e.g. [ya η] 'relative particle' [ma η] 'indeed' (see (3) and (4)). CVCC or CCV are not allowed in JI, accordingly there should be one constraint to block [η h] and [η ?] from forming one syllable simultaneously as consonant clusters. The markedness constraint *COMPLEX-SYLLABLE used in McCarthy (2008) is useful to block the CVCC or CCV from occurring in the output. As a consequence, *N-GL/FRIC and *N-GL/STOP will be violated since these sequences occur in the output and as a result of this, *COMPLEX-SYLLABLE dominates *N-GL/FRIC and *N-GL/STOP respectively.

¹ Pater (1996) uses the common *NC (nasal can not be followed by voiceless consonants). Given the data Pater is considering, Standard Indonesian, has the need to motivate the fusional analysis, *NC seems an adequate constraint. However, it offers no insight in the nasal glottal fricative [ηh...] and nasal glottal stop [η?...] in JI since neither [h] nor [?] behaves like voiceless consonants.

Tableaus

(3) *COMP-SYLL >> *N-GL/FRIC >> LINEARITY, DEP and MAX

/N ₁ +h ₂ ukum/ (to punish)	*COMP-SYLL	*N-GL/FRIC	LINEARITY	DEP	MAX
→a. ŋ₁əh₂ukum				*	
b. ŋ _{1,2} ukum			*		*
c. ŋ ₁ h ₂ ukum		*!			
/yaŋ hari/					
(relative.particle day)					
→d. yaŋ hari		*			
e. yaŋh.a.ri	*!				
f. ya.ŋha.ri	*!			<u> </u>	1 ! !

(4) *COMP-SYLL >> *N-GL/STOP >> LINEARITY, DEP and MAX

$N_1 + ?_2$ ambil (to take)	*COMP-SYLL	*N-GL/STOP	LINEARITY	DEP	MAX
→a. ŋ _{1,2} ambil			*	!	*
b. ໗ ₁ ຈ? ₂ ambil				*	
c. $\eta_1 ?_2$ ambil		*!			
/maŋ ʔɛnak/ (indeed					
delicious)				!	
→d. maŋ ʔɛnak		*		:	
e. maŋ?.ɛ.nak	*!				
f. ma.ŋʔɛ.nak	*!				

References

- Cohn, Abigail. 1993. The status of nasalized continuants. In Huffman and Krakow, eds., pp. 329-367.
- McCarthy, John., and Alan Prince. 1994. Emergence of the unmarked: Optimality in Prosodic Morphology. In Mercè Gonzàles, ed., *Proceedings of NELS* 24, pp. 333-379. GLSA.
- McCarthy, John, and Alan Prince. 1995. Faithfulness and reduplicative identity. In Jill N. Beckman, Laura Walsh Dickey, & Suzanne Urbanczyk, eds., *University of Massachusetts Occasional Papers: Papers in Optimality Theory* 18, 249-384.
- McCarthy, John. 2008. *Doing optimality theory: Applying theory to data*. Malden: Blackwell Publishing.
- Ohala, John. 1975. Phonetic explanations for nasal sound patterns. In Ferguson, Hyman, and Ohala, eds.
- Ohala, John, and Manjari Ohala. 1993. The phonetics of nasal phonology: Theorems and data. In Huffman and Krakow, eds.
- Ohala, John, Maria-Josep Solé, and Goangshiuan Ying.. 1998. The controversy of nasalized fricatives. *Proceedings of the 135th Meeting of the ICA/Acoustical Society of America*, Seattle, Washington, USA, pp. 2921-2922.
- Pater, Joe. 1996. Austronesian Nasal Substitution and other NC effects. In René Kager, Harry van der Hulst, and Wim Zonneveld, eds., *The Prosody Morphology Interface*. Cambridge University Press.
- Sneddon, James. 2006. *Colloquial Jakarta Indonesian*, Canberra: Pacific Linguistics. Australian National University.
- Walker, Rachel. 1998. Nasalization, Neutral Segments, and Opacity Effects. University of California Santa Cruz doctoral dissertation.

Key Words: Jakarta Indonesian, Austronesian, nasal prefix, nasal substitutions, phonology, optimality theory.